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Abstract. Lattice effective field theory combines the theoretical framework of effective
field theory with supercomputer lattice simulations. We discuss methods, recent results,
and computational scaling for calculations of nuclei using lattice effective field theory. In
particular we describe the calculation of the low-lying spectrum of carbon-12 and the scaling of
computational resources needed for the calculation of other nuclei.

1. Introduction

Lattice effective field theory combines the theoretical framework of effective field theory with
supercomputer lattice simulations. Effective field theory (EFT) is an organizational tool which
reconstructs the interactions of particles as a systematic expansion in powers of soft scales such
as particle momenta. Chiral EFT provides a systematic hierarchy of the forces among protons
and neutrons. This approach comes with an estimate of the theoretical uncertainty at any given
order in the chiral expansion which can be systematically reduced at higher orders. Over the
past two decades, chiral EFT has proven a reliable and precise tool to describe the physics of
few-nucleon systems. A recent review can be found in Ref. [1]. The low-energy expansion of
EFT is organized in powers of Q, where Q denotes the typical momentum of particles. In chiral
EFT the momentum scale Q is taken of the order of the mass of the pion times the speed of
light. The most important contributions come at leading order (LO) or O(Q0). The next most
important terms are at next-to-leading order (NLO) or O(Q2). The terms just beyond this are
next-to-next-to-leading order (NNLO) or O(Q3). In the lattice calculations discussed here, we
consider all possible interactions up to O(Q3). We also separate out explicitly the O(Q2) terms
which arise from electromagnetic interactions (EM) and isospin symmetry breaking (IB) due to
mass differences of the up and down quarks.

Several different ab initio approaches have been used to calculate the properties of few-
and many-nucleon systems. This includes the no-core shell model [2, 3, 4, 5, 6], constrained-
path [7, 8, 9, 10] and fixed-node [11, 12] Green’s function Monte Carlo, auxiliary-field diffusion
Monte Carlo [13, 14, 15], and coupled cluster methods [16, 17, 18]. Lattice effective field
theory differs from other ab initio approaches in several respects. One difference is that many
different phenomena can be studied in lattice EFT using the same lattice action. In principle
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Figure 1. Phase diagram showing regions accessible by lattice QCD simulations and regions
accessible by nuclear lattice EFT simulations.

all systematic errors are introduced up front when defining the low-energy effective theory, as
opposed to the particular computational scheme used to calculate observables. Once the low-
energy effective lattice action is determined, it may be used to calculate bound nuclei, transition
matrix elements, the ground state of neutron matter, or bulk thermodynamic properties at
nonzero temperature.

On the computational side lattice effective field theory is helped by efficient lattice methods
developed for lattice QCD and condensed matter applications. This includes Markov Chain
Monte Carlo techniques, auxiliary fields [19, 20], pseudofermion methods [21], and non-local
updating schemes such as hybrid Monte Carlo [22, 23, 24]. Lattice effective field theory was
first used in studies of infinite nuclear matter [25] and infinite neutron matter with pions [26]
and without pions [27, 28, 29]. The method has also been used to study light nuclei in pionless
effective field theory [30] and chiral effective field theory at leading order [31]. More recently
dilute neutrons have been simulated at next-to-leading order in chiral effective field theory
[32, 33] as well as light nuclei at next-to-next-to-leading order [34, 35]. As indicated in Fig.
1, lattice EFT is able to explore regions of the QCD phase diagram not accessible to lattice
QCD. It also provides a test of duality between quark and hadronic descriptions in the region
where the two methods overlap. Some recent developments in lattice effective field theory are
reviewed in Ref. [36].

2. Methods

We simulate the interactions of nucleons using the Monte Carlo transfer matrix projection
method introduced in Ref. [37]. Further details can be found in Ref. [31] as well as a recent
review article [36]. Conceptually we are evolving the nucleons forward in Euclidean time while
allowing them to interact as indicated in Fig. 2. In the actual lattice calculation, however, each
nucleon evolves as if a single particle in a fluctuating background of pion fields and auxiliary
fields. This is shown in Fig. 3. The interactions in Fig. 2 are reproduced after integrating
over the fluctuating pion and auxiliary fields.
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Figure 2. Worldlines of nucleons evolving in Euclidean time with contact interactions and the
exchange of pions.
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Figure 3. Worldline for a single nucleon evolving in a fluctuating background of pion fields and
auxiliary fields.

The amplitude for a given configuration of pion and auxiliary fields is proportional to the
determinant of an A × A matrix Mij . The entries of Mij are the single nucleon worldline
amplitudes for a nucleon starting at momentum state j at t = 0 and ending at momentum state
i at t = tf .

Formally the leading-order calculation proceeds as follows. Let |Ψinit
Z,N 〉 be a Slater

determinant of single-nucleon standing waves in a periodic cube for Z protons and N neutrons.
Let HLO denote the leading-order Hamiltonian including instantaneous one-pion exchange and
contact interactions. Let HSU(4) be a Wigner SU(4)-symmetric approximation to HLO without
pion exchange. Let us define a trial wavefunction

|Ψ(t′)〉 = exp
[

−HSU(4)t
′
]

|Ψinit
Z,N 〉. (1)
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Figure 4. Schematic diagram of the transfer matrix calculation.

With this trial wavefunction we define the amplitude,

Z(t) = 〈Ψ(t′)| exp [−HLOt] |Ψ(t′)〉, (2)

as well as an estimate of the energy,

E(t) = −
∂

∂t
[lnZ(t)]. (3)

In the limit of large t we get
lim
t→∞

E(t) = E0, (4)

where E0 is the energy of the lowest eigenstate |Ψ0〉 of HLO with a nonzero inner product with
|Ψ(t′)〉. In order to compute the expectation value of some operator O we define

ZO(t) = 〈Ψ(t′)| exp[−HLOt/2] O exp[−HLOt/2]|Ψ(t′)〉. (5)

The expectation value of O for |Ψ0〉 can be computed in the large t limit,

lim
t→∞

ZO(t)

Z(t)
= 〈Ψ0|O|Ψ0〉. (6)

We use exp
[

−HSU(4)t
′
]

as an approximate inexpensive low-energy filter and exp [−HLOt]

as an exact low-energy filter. The projection exp
[

−HSU(4)t
′
]

is computationally inexpensive
because the path integral for leading-order pionless effective field theory in the Wigner SU(4)
limit is strictly positive for any even number of nucleons [38]. Although there is no positivity
theorem for odd numbers of nucleons, sign oscillations are also suppressed in odd systems when
only one particle or one hole away from an even system with no sign oscillations. Higher order
contributions, Coulomb repulsion, and isospin-breaking effects are computed as perturbative
corrections to the leading-order transfer matrix. A schematic diagram of the transfer matrix
calculation is shown in Fig. 4.

3. Recent results: Carbon-12 spectrum

Our collaboration has very recently completed ab initio lattice calculations of the low-energy
spectrum of carbon-12 using effective field theory [39]. In addition to the ground state and
excited spin-2 state, our calculations find a resonance at −85(3) MeV with all of the properties
of the Hoyle state and in agreement with the experimentally observed energy. The Hoyle state
plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production
of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus
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Figure 5. Lattice results for the ground state of carbon-12. Panel A shows the leading-
order energy while Panel B shows corrections due to NLO, NLO with IB + EM, and NNLO
interactions.

Table 1. Lattice results for the low-lying excited states of 12C at LO, NLO, NLO with IB +
EM, and NNLO. For comparison the experimentally observed energies are shown. All energies
are in units of MeV.

0+
2 2+

1 , Jz = 0 2+
1 , Jz = 2

LO [O(Q0)] −94(2) −92(2) −89(2)
NLO [O(Q2)] −82(3) −87(3) −85(3)
IB + EM [O(Q2)] −74(3) −80(3) −78(3)
NNLO [O(Q3)] −85(3) −88(3) −90(4)
Experiment −84.51 −87.72

was postulated by Hoyle [40] as a necessary ingredient for the fusion of three alpha particles to
produce carbon at stellar temperatures.

In Fig. 5 we show the ground state energy of carbon-12. Panel A plots the leading-order
energy as a function of Euclidean time while Panel B shows higher-order corrections due to
NLO interactions, NLO with isospin-breaking (IB) and electromagnetic (EM) interactions, and
next-to-next-to-leading order (NNLO) interactions.

In Table 1 we show results for the low-lying excited states of 12C at leading order (LO),
next-to-leading order (NLO), next-to-leading order with isospin-breaking and electromagnetic
corrections (IB + EM), and next-to-next-to-leading order (NNLO). All energies are in units of
MeV. For comparison we list the experimentally observed energies. The error bars in Table 1
are one standard deviation estimates which include both Monte Carlo statistical errors and
uncertainties due to extrapolation at large Euclidean time. Systematic errors due to omitted
higher-order interactions can be estimated from the size of corrections from O(Q0) to O(Q2)
and from O(Q2) to O(Q3).

In Fig. 6 we show lattice results used to extract the excited state energies at leading order. For
each excited state we plot the logarithm of the ratio of the projection amplitudes, Z(t)/Z0+

1

(t), at

leading order. Z0+

1

(t) is the ground state projection amplitude, and the slope of the logarithmic

function at large t gives the energy difference between the ground state and the excited state.
In Fig. 7 we present lattice results used to determine the higher-order corrections to the excited
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Figure 6. Extraction of the excited states of 12C from the time dependence of the projection
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relative to the ground state.

-20

-10

0

10

20

 0  0.04  0.08

∆E
(t

) 
(M

eV
)

t (MeV
-1

)

(A)  0
+
2

∆NLO
∆IB + ∆EM

∆NNLO

-20

-10

0

10

20

 0  0.04  0.08

∆E
(t

) 
(M

eV
)

t (MeV
-1

)

(B)  2
+
1, Jz = 0

∆NLO
∆IB + ∆EM

∆NNLO

-20

-10

0

10

20

 0  0.04  0.08

t (MeV
-1

)

(C)  2
+
1, Jz = 2

∆NLO
∆IB + ∆EM

∆NNLO

Figure 7. Higher-order corrections for the Hoyle state (A) and Jz = 0 (B) and Jz = 2 (C)
projections of the spin-2 state. We show results versus projection time for corrections at NLO,
NLO with IB + EM, and NNLO.

state energies. We show energies versus Euclidean time for corrections at NLO, NLO with IB
+ EM, and NNLO.

As seen in Table 1 and summarized in Fig. 8, the NNLO results for the Hoyle state and
spin-2 state are in agreement with the experimental values. These results are the first ab initio

calculations of the Hoyle state with an energy close to the phenomenologically important 8Be-
alpha threshold. Experimentally the 8Be-alpha threshold is at −84.80 MeV, and the lattice
determination at NNLO gives −86(2) MeV. We also note the energy level crossing involving
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Figure 8. Summary of lattice results for the carbon-12 spectrum and comparison with the
experimental values. For each order in chiral EFT labelled on the left, results are shown for the
ground state (blue circles), Hoyle state (red squares), and the Jz = 0 (open black circles) and
Jz = 2 (filled black circles) projections of the spin-2 state.

the Hoyle state and the spin-2 state. The Hoyle state is lower in energy at LO but higher
at NLO. One of the main characteristics of the NLO interactions is to increase the repulsion
between nucleons at short distances. This has the effect of decreasing the binding strength of
the spinless states relative to higher-spin states. We note the 17 MeV reduction in the ground
state binding energy and 12 MeV reduction for the Hoyle state while less than half as much
binding correction for the spin-2 state. This degree of freedom in the energy spectrum suggests
that at least some fine-tuning of parameters is needed to set the Hoyle state energy near the
8Be-alpha threshold.

4. Computational scaling and performance

The very low memory and trivially parallel structure of the lattice Monte Carlo codes allow jobs
to scale ideally with several thousand processors. In Fig. 9 we show the computational time
for each processor on the BlueGene/P supercomputer JUGENE at the Jülich Supercomputing
Center to generate one hybrid Monte Carlo (HMC) trajectory. The time is plotted as a function
of the number of parallel processors. We see that the performance is entirely independent of
the number of processors. The data shown is for a lattice simulation of carbon-12 in a periodic
cube with length L = 13.8 fm.

Fig. 10 shows the computational time for a Xeon processor to generate one HMC trajectory
versus the number of nucleons A. For this task the Xeon processor benchmarks at two and
one-half times faster than a JUGENE processor. As the plot shows, the computational time
scales as A1.7 for these values of A. For smaller values the scaling is close to linear in A. The
data shown is for lattice simulations of helium-4, beryllium-8, carbon-12, and oxygen-16 in a
periodic cube with length L = 13.8 fm.

Fig. 11 shows the computational time for a Xeon processor to generate one HMC trajectory
versus the lattice volume V . The computational time scales as V 1.5 for the volumes considered.
The data shown is for lattice simulations of carbon-12 in periodic cubes with lengths L = 9.9,
11.8, 13.8, and 15.8 fm.

Fig. 12 shows the average sign
〈

eiθ
〉

versus the number of nucleons A. The average sign
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Figure 9. Computational time for each JUGENE processor to generate one HMC trajectory
versus the number of parallel processors.
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Figure 10. Computational time for a Xeon processor to generate one HMC trajectory versus
number of nucleons A.

measures the severity of sign fluctuations in the Monte Carlo simulation of the lattice path
integral. The average sign is approximately proportional to e−0.11A. The data shown is for
lattice simulations of helium-4, beryllium-8, carbon-12, and oxygen-16 in a periodic cube with
length L = 13.8 fm.

5. Computational scaling for larger systems

Throughout this discussion we have keep the lattice spacing fixed. Decreasing the lattice spacing
by a factor F will modify the required lattice volume by a factor of F 3. That dependence is
straightforward. However at this time there is no quantitative data on how much this affects the
average sign. We base all estimates relative to simulations of the ground state of carbon-12 on
a L = 13.8 fm periodic cube at lattice spacing a = 1.97 fm. This calculation in 2009 took about
12 rack-days on JUGENE. Algorithmic improvements in 2010 have reduced the same task to
2 rack-days on JUGENE. Each processor on JUGENE has a peak performance of 3.4 GFlop,
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and each rack has 4096 processors. If we estimate the actual average performance of each
processor to be 2 GFlops, the calculation requires about 4 × 10−5 PFlop-yr. Let us define

XCPU
12C = 4 × 10−5 PFlop-yr. (7)

In terms of RAM memory, the carbon-12 simulation uses 4A = 48 nucleon degrees of freedom,
3 pion fields, and 16 auxiliary fields The RAM memory required for the carbon-12 calculation
is about 40 MB. We define

XRAM
12C = 40 MB. (8)

With each simulation we store about 600, 000 configurations, with each lattice configuration
requiring about 3 MB of data. This comes to about 2 TB of archival disk storage. We define

Xstorage
12C

= 2 TB. (9)

At fixed volume and fixed number of configurations, the CPU scaling with nucleon number is
about A1.7. At fixed nucleon number and fixed number of configurations, the CPU scaling with



volume is about V 1.5. The average sign is more or less independent of volume, but with the
2010 verison of the code it depends on the number of nucleons as exp [−0.11A]. The number
of required configurations for a given accuracy scales with the square of the reciprocal of the
average sign. Since the average density of the nucleus is relatively constant, V scales linear
with A. This gives the CPU scaling estimate

XCPU ≈ XCPU
12C ×

(

A

12

)3.2

exp [0.22 (A − 12)] . (10)

The RAM memory scales as

XRAM ∝ (4A + 16 + 3) V. (11)

Since V is linear with A, we find

XRAM ≈ XRAM
12C ×

(

A

12

)2

. (12)

The disk storage scales with the volume times the number of required configurations. Therefore

Xstorage ≈ Xstorage
12C

×

(

A

12

)1.5

exp [0.22 (A − 12)] . (13)

For nuclei with S 6= 0 or I 6= 0, the RAM memory formula in Eq. (12) still applies. The only
computational difference is that the average sign will decrease. We estimate that the average
sign will scale as

exp [−1.5(S mod 2) − 2I] , (14)

where S mod2 is the total spin S modulo 2 and I is the total isospin. This greatly oversimplifies
the dependence, but probably is still a decent order-of-magnitude estimate in most cases.

This average sign modifies the CPU estimate,

XCPU ≈ XCPU
12C ×

(

A

12

)3.2

exp [0.22 (A − 12) + 3(S mod 2) + 4I] , (15)

as well as the storage estimate,

Xstorage ≈ Xstorage
12C

×

(

A

12

)1.5

exp [0.22 (A − 12) + 3(S mod 2) + 4I] . (16)
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